Abstract:

Renal cell carcinoma (RCC) is well known that it cannot be treated with traditional chemotherapy or radiotherapy. 16-Hydroxycleroda-3,13-dien-15,16-olide (CD), isolated from Polyalthia longifolia Benth. & Hook. f. var. pendula had been reported to display significant efficacy against cancer cell lines. To determine the anti-tumour activities of CD in two clear cell type RCC (ccRCC) cell lines (A-498 and 786-O). In addition, the underlying mechanisms were also examined. The cell viabilities of CD-treated ccRCC cells were examined by MTT assay. The apoptotic features were confirmed by acridine orange and ethidium bromide staining. 2′,7′-dichlorofluorescin diacetate was used to check reactive oxygen species (ROS) involvement. Mitochondria membrane potential (MMP) were determined by using fluorescent dyes, rhodamine 123 and 5′,6,6′-tetrachloro-1,1′,3,3′-tetraethyl benzimidazolylcarbocyanine iodide (JC-1). Proapoptotic, anti-apoptotic proteins and intracellular signaling molecules involved in CD-induced apoptosis were examined by Western blot analysis. CD inhibited both 786-O and A-498 cell proliferation and induced a series apoptotic characteristics expressions, ROS accumulation, caspase-3 activation as well as poly-(ADP-ribose) polymerase cleavage in both ccRCC cells. Additionally, CD caused MMP reduction and cytochrome c release from mitochondria as well as inhibition of anti-apoptotic proteins, including B cell lymphoma 2 and heat shock protein 70. Mechanically, we address that CD suppressed cell proliferation and induced apoptosis via induction of FOXO3a as well as decreased phosphorylation of Akt, mTOR, MEK/ERK and their downstream molecules, cMyc and hypoxia inducible factor 2α expression in a concentration- and time-dependent trend.

Liu, Lee, Huang, Chia, Chen, Chen, , , (2017). 16-Hydroxycleroda-3, 13-dien-15, 16-olide inhibits the proliferation and induces mitochondrial-dependent apoptosis through Akt, mTOR, and MEK-ERK pathways in human renal carcinoma cells. Phytomedicine : international journal of phytotherapy and phytopharmacology, 2017 Dec;36():95-107. https://www.ncbi.nlm.nih.gov/pubmed/29157834