Hyperbaric Oxygen Therapy
What is Hyperbaric Oxygen Therapy?
Normal atmospheric pressure (at sea level) is 1 atmosphere (1 atm). Patients receive HBOT in a pressurized hyperbaric chamber. During treatment, the chamber pressure gradually increases to about 2 – 2.5 x normal atmospheric pressure (2 – 2.5 ATA).
How does Hyperbaric Oxygen Therapy Work?
Our cells need oxygen to heal and stay healthy, and hyperbaric oxygen therapy increases oxygen levels by nearly 1200% during treatments. Increased atmospheric pressure and breathing 100% medical grade oxygen results in increased partial pressure of oxygen in our tissues by almost 20-fold, supersaturating the blood(1).
Such an increase in oxygen causes elevated production of reactive oxygen species (ROS) and reactive nitrogen species (RNS), which have been demonstrated to regulate thousands of genes(2, 3). These genes control growth factors, cytokines, and hormones; HBOT regulates them in a way that reduces inflammation, increases stem cell availability, forms new blood vessels, and defends against bacteria(3, 4).

New Blood Vessel Formation

Increased Stem Cell Activity

Decreased Inflammation

Antibacterial & Antimicrobial
Recent Hyperbaric Oxygen Therapy News & Research
Thoughts on B-vitamins and dementia
Abstract The B-vitamins, including vitamins B12, B6, B1, B2, niacin (B3) and folate (B9), have been implicated as protective risk factors against cognitive decline and Alzheimer's disease. This commentary reviews the evidence to support protective relations of these...
Hyperbaric Oxygenation for Lyme Vasculitis
Purpose It is the purpose of this paper to demonstrate the positive effects of hyperbaric oxygenation on severe encephalopathy occurring in Lyme Disease as a synergistic treatment with antibiotics. Summary Lyme disease is a tick-borne disease caused by a Borrelia...
Integrative Approaches to Treat Migraine Headaches
The past 10 months have been a headache and, in anticipation of the long, trying winter weeks ahead, we are addressing a concern specific to an estimated 20% of the American population: migraine headaches. In fact, because they are often misdiagnosed, the percentage...
References:
- Bitterman, Haim. “Bench-to-Bedside Review: Oxygen as a Drug.” Critical Care, vol. 13, no. 1, 2009, p. 205. DOI.org (Crossref), doi:10.1186/cc7151.
- Thom, Stephen R., et al. “Stem Cell Mobilization by Hyperbaric Oxygen.” American Journal of Physiology-Heart and Circulatory Physiology, vol. 290, no. 4, Apr. 2006, pp. H1378–86. physiology.org (Atypon), doi:10.1152/ajpheart.00888.2005.
- Thom, Stephen R. “Oxidative Stress Is Fundamental to Hyperbaric Oxygen Therapy.” Journal of Applied Physiology, vol. 106, no. 3, American Physiological Society, Mar. 2009, pp. 988–95. journals.physiology.org (Atypon), doi:10.1152/japplphysiol.91004.2008.
- Godman, Cassandra A., et al. “Hyperbaric Oxygen Treatment Induces Antioxidant Gene Expression.” Annals of the New York Academy of Sciences, vol. 1197, June 2010, pp. 178–83. PubMed, doi:10.1111/j.1749-6632.2009.05393.x.
- Thom, Stephen R. “Hyperbaric Oxygen – Its Mechanisms and Efficacy.” Plastic and Reconstructive Surgery, vol. 127, no. Suppl 1, Jan. 2011, pp. 131S-141S. PubMed Central, doi:10.1097/PRS.0b013e3181fbe2bf.
- Thackham, Jennifer A., et al. “The Use of Hyperbaric Oxygen Therapy to Treat Chronic Wounds: A Review.” Wound Repair and Regeneration, vol. 16, no. 3, 2008, pp. 321–30. Wiley Online Library, doi:10.1111/j.1524-475X.2008.00372.x
- Thom, Stephen R., et al. “Stem Cell Mobilization by Hyperbaric Oxygen.” American Journal of Physiology-Heart and Circulatory Physiology, vol. 290, no. 4, Apr. 2006, pp. H1378–86. physiology.org (Atypon), doi:10.1152/ajpheart.00888.2005.
- Thom, Stephen R., et al. “Stimulation of Perivascular Nitric Oxide Synthesis by Oxygen.” American Journal of Physiology-Heart and Circulatory Physiology, vol. 284, no. 4, Apr. 2003, pp. H1230–39. physiology.org (Atypon), doi:10.1152/ajpheart.01043.2002.
- Aicher, Alexandra, et al. “Essential Role of Endothelial Nitric Oxide Synthase for Mobilization of Stem and Progenitor Cells.” Nature Medicine, vol. 9, no. 11, Nov. 2003, pp. 1370–76. PubMed, doi:10.1038/nm948.
- “CD34+AC133+ Cells Isolated from Cord Blood Are Highly Enriched in Long-Term Culture-Initiating Cells, NOD/SCID-Repopulating Cells and Dendritic Cel… – PubMed – NCBI.” Accessed August 19, 2019. https://www.ncbi.nlm.nih.gov/pubmed/9831864?dopt=Abstract.
- Jiang, Yuehua, Balkrishna N. Jahagirdar, R. Lee Reinhardt, Robert E. Schwartz, C. Dirk Keene, Xilma R. Ortiz-Gonzalez, Morayma Reyes, et al. “Pluripotency of Mesenchymal Stem Cells Derived from Adult Marrow.” Nature 418, no. 6893 (July 4, 2002): 41–49. https://doi.org/10.1038/nature00870.
- Benson, R. M., et al. “Hyperbaric Oxygen Inhibits Stimulus-Induced Proinflammatory Cytokine Synthesis by Human Blood-Derived Monocyte-Macrophages.” Clinical and Experimental Immunology, vol. 134, no. 1, Oct. 2003, pp. 57–62. PubMed Central, doi:10.1046/j.1365-2249.2003.02248.x.
- Thom, Stephen R. “Hyperbaric Oxygen – Its Mechanisms and Efficacy.” Plastic and Reconstructive Surgery, vol. 127, no. Suppl 1, Jan. 2011, pp. 131S-141S. PubMed Central, doi:10.1097/PRS.0b013e3181fbe2bf.
- Godman, Cassandra A., et al. “Hyperbaric Oxygen Treatment Induces Antioxidant Gene Expression.” Annals of the New York Academy of Sciences, vol. 1197, June 2010, pp. 178–83. PubMed, doi:10.1111/j.1749-6632.2009.05393.x.
- Memar, Mohammad Yousef, et al. “Hyperbaric Oxygen Therapy: Antimicrobial Mechanisms and Clinical Application for Infections.” Biomedicine & Pharmacotherapy, vol. 109, Jan. 2019, pp. 440–47. ScienceDirect, doi:10.1016/j.biopha.2018.10.142.
- Çimşit, Maide, et al. “Hyperbaric Oxygen Therapy as an Anti-Infective Agent.” Expert Review of Anti-Infective Therapy, vol. 7, no. 8, Taylor & Francis, Oct. 2009, pp. 1015–26. Taylor and Francis+NEJM, doi:10.1586/eri.09.76.
- Turhan, Vedat, et al. “Hyperbaric Oxygen as Adjunctive Therapy in Experimental Mediastinitis.” Journal of Surgical Research, vol. 155, no. 1, July 2009, pp. 111–15. ScienceDirect, doi:10.1016/j.jss.2008.08.031.
- Lerche, C. J., et al. “Hyperbaric Oxygen Therapy Augments Tobramycin Efficacy in Experimental Staphylococcus Aureus Endocarditis.” International Journal of Antimicrobial Agents, vol. 50, no. 3, Sept. 2017, pp. 406–12. ScienceDirect, doi:10.1016/j.ijantimicag.2017.04.025.