Abstract:

In the present study, we observed the haemodynamic changes, using echocardiography and Doppler, in ten healthy volunteers during 6 h of compression in a hyperbaric chamber with a protocol designed to reproduce the conditions as near as possible to a real dive. Ambient pressure varied from 1.6 to 3 atm (1 atm=101.325 kPa) and partial pressure of inspired O2 from 1.2 to 2.8 atm. Subjects performed periods of exercise with breathing through a closed-circuit self-contained underwater breathing apparatus (SCUBA). Subjects did not eat or drink during the study. Examinations were performed after 15 min and 5 h. After 15 min, stroke volume (SV), left atrial (LA) diameter and left ventricular (LV) end-diastolic diameter (LVEDD) decreased. Heart rate (HR) and cardiac output (CO) did not vary, but indices of the LV systolic performance decreased by 10% and the LV meridional wall stress increased by 17%. After 5 h, although weight decreased, the serum protein concentration increased. Compared with values obtained after 15 min, SV and CO decreased, but LV systolic performance, LA diameter, LVEDD and LV meridional wall stress remained unchanged. Compared with the reference values obtained at sea level, total arterial compliance decreased, HR remained unchanged and CO decreased. In conclusion, hyperbaric hyperoxia results in significant haemodynamic changes. Initially, hyperoxia and the SCUBA system are responsible for reducing LV preload, increasing LV afterload and decreasing LV systolic performance, although CO did not change. Prolonged exposure resulted in a further decrease in LV preload, because of dehydration, and in a further increase in LV afterload, due to systemic vasoconstriction, with the consequence of decreasing CO.

Molénat, Boussuges, Grandfond, Rostain, Sainty, Robinet, Galland, Meliet, (2004). Haemodynamic effects of hyperbaric hyperoxia in healthy volunteers: an echocardiographic and Doppler study. Clinical science (London, England : 1979), 2004 Apr;106(4):389-95. https://www.ncbi.nlm.nih.gov/pubmed/14641106