Abstract

Neurogenic inflammation, a well-defined pathophysiologial process is characterized by the release of potent vasoactive neuropeptides, predominantly calcitonin gene-related peptide (CGRP), substance P (SP), and neurokinin A from activated peripheral nociceptive sensory nerve terminals (usually C and A delta-fibers). These peptides lead to a cascade of inflammatory tissue responses including arteriolar vasodilation, plasma protein extravasation, and degranulation of mast cells in their peripheral target tissue. Neurogenic inflammatory processes have long been implicated as a possible mechanism involved in the pathophysiology of various human diseases of the nervous system, respiratory system, gastrointestinal tract, urogenital tract, and skin. The recent development of several innovative experimental migraine models has provided evidence suggestive of the involvement of neuropeptides (SP, neurokinin A, and CGRP) in migraine headache. Antidromic stimulation of nociceptive fibers of the trigeminal nerve resulted in a neurogenic inflammatory response with marked increase in plasma protein extravasation from dural blood vessels by the release of various sensory neuropeptides. Several clinically effective abortive antimigraine medications, such as ergots and triptans, have been shown to attenuate the release of neuropeptide and neurogenic plasma protein extravasation. These findings provide support for the validity of using animal models to investigate mechanisms of neurogenic inflammation in migraine. These also further strengthen the notion of migraine being a neuroinflammatory disease. In the clinical context, there is a paucity of knowledge and awareness among physicians regarding the role of neurogenic inflammation in migraine. Improved understanding of the molecular biology, pharmacology, and pathophysiology of neurogenic inflammation may provide the practitioner the context-specific feedback to identify the novel and most effective therapeutic approach to treatment. With this objective, the present review summarizes the evidence supporting the involvement of neurogenic inflammation and neuropeptides in the pathophysiology and pharmacology of migraine headache as well as its potential significance in better tailoring therapeutic interventions in migraine or other neurological disorders. In addition, we have briefly highlighted the pathophysiological role of neurogenic inflammation in various other neurological disorders.

Keywords: Migraine; neurogenic inflammation; neuropeptides.

Malhotra R. Understanding migraine: Potential role of neurogenic inflammation. Ann Indian Acad Neurol. 2016 Apr-Jun;19(2):175-82. doi: 10.4103/0972-2327.182302. PMID: 27293326; PMCID: PMC4888678.