Hyperbaric oxygen therapy for postoperative ischemic bronchitis after resection of lung cancer.

Hyperbaric oxygen therapy (HBOT) has been used successfully in the treatment of specific ischemic injuries, but has been a little evaluated specifically in postoperative ischemic bronchitis (POIB). The purpose of this study was to evaluate the effect of HBOT when used for POIB after resection of lung cancer. From January 1999 to December 2016, 1,100 patients underwent lymph node dissection (LND) and either anatomic pulmonary resection or lung resection with bronchoplasty for lung cancer. POIB was diagnosed by bronchoscopy. HBOT was administered after POIB was diagnosed. HBOT comprised one 60-minute session daily in the hyperbaric chamber at 2.0 absolute atmospheres with 100% oxygen.

Radiation-induced skin reactions: mechanism and treatment.

Radiotherapy (RT) is a major treatment for malignant tumors. The latest data show that >70% of patients with malignant tumors need RT at different periods. Skin changes can be experienced by up to 95% of patients who underwent RT. Inflammation and oxidative stress (OS) have been shown to be generally associated with radiation-induced skin reactions (RISRs). Inflammatory response and OS interact and promote each other during RISRs. Severe skin reactions often have a great impact on the progress of RT. The treatment of RISRs is particularly critical because advanced RT technology can also lead to skin reactions. RISRs are classified into acute and chronic reactions.

Hyperbaric oxygen combined with 5-aminolevulinic acid photodynamic therapy inhibited human squamous cell proliferation.

he photodynamic therapy (PDT) depends on the presence of molecular oxygen. Thus, the efficiency of PDT is limited in anoxic regions of tumor tissue and vascular shutdown. It is reported the use of hyperbaric oxygen (HBO) may enhance the efficiency of PDT. However, there are rarely studies about utilizing HBO plus PDT for treatment with human squamous cell carcinoma (SCC). Therefore, this study aimed to investigate and compare the therapeutic effect of combined therapy and PDT alone treatment. Multiple cellular and molecular biology techniques were used in the current study such as CCK-8, western blotting, flow cytometry, MDC staining and immunofluorescence assay.

A Case of Refractory Hemorrhagic Cystitis in which Bleeding Control was Finally Achieved by Cystectomy.

A 60-year-old man presented at our hospital with gross hematuria. He had been treated for nephrotic syndrome with cyclophosphamide and steroids since he was in his 20s. We detected diffuse hemorrhagic cystitis on cystoscopy and diagnosed him with cyclophosphamide-induced hemorrhagic cystitis. He was hospitalized due to clot retention. We treated him with blood transfusion for severe anemia and conducted continuous bladder irrigation. We performed hyperbaric oxygen therapy and transurethral electric coagulation, and increased the steroid dose. However, we could not control the hematuria. Finally, we performed cystectomy, and he is now well without hematuria. Although cystectomy is the final option, it is important to decide it in a timely manner because a delay decreases the quality of life.

Hemorrhagic Cystitis: Treatment With Hyperbaric Oxygen Therapy in Patients With Acute Lymphoblastic Leukemia.

Hyperbaric oxygen therapy is a rare treatment modality for hemorrhagic cystitis (HC) following BK virus reactivation in the immunosuppressed population. Clinicians need to be aware of the etiology, preventive measures, complications, and various management techniques in HC while treating patients undergoing bone marrow transplantation. This study details the pathologic progression of HC in a patient with acute lymphoblastic leukemia harboring BK virus after cytotoxic induction chemotherapy and haploidentical marrow transplantation. A search of PubMed for literature published from 1973-2018 was conducted using keywords.

Overcoming tumor hypoxia as a barrier to radiotherapy, chemotherapy and immunotherapy in cancer treatment.

Hypoxia exists to some degree in most solid tumors due to inadequate oxygen delivery of the abnormal vasculature which cannot meet the demands of the rapidly proliferating cancer cells. The levels of oxygenation within the same tumor are highly variable from one area to another and can change over time. Tumor hypoxia is an important impediment to effective cancer therapy. In radiotherapy, the primary mechanism is the creation of reactive oxygen species; hypoxic tumors are therefore radiation resistant. A number of chemotherapeutic drugs have been shown to be less effective when exposed to a hypoxic environment which can lead to further disease progression.