Evaluation of hyperbaric oxygen therapy for spinal cord injury in rats with different treatment course using diffusion tensor imaging.

Animal study. To evaluate the efficacy of hyperbaric oxygen (HBO) therapy for spinal cord injury (SCI) in rats with different treatment course using diffusion tensor imaging (DTI). Hospital in Fuzhou, China. Fifty adult Sprague-Dawley rats were grouped as: (A) sham-operated group (n = 10); (B) SCI without HBO therapy group (n = 10); (C) SCI with HBO therapy for 2 weeks (SCI+HBO) group (n = 10); (D) SCI with HBO therapy for 4 weeks (SCI+HBO) group (n = 10); (E) SCI with HBO therapy for 6 weeks (SCI+HBO) group (n = 10). Basso Beattie Bresnahan (BBB) scores and diffusion tensor imaging parameters including fractional anisotropy (FA), mean diffusivity (MD), radial diffusion (RD), and axial diffusion (AD) values in the injury epicenter, as well as 2 mm rostral and caudal to the injury epicenter were collected and analyzed 6 weeks post-injury.

Effect of hyperbaric oxygen therapy on HMGB1/NF-κB expression and prognosis of acute spinal cord injury: A randomized clinical trial.

Although there are reports of the beneficial effects of hyperbaric oxygen (HBO) therapy in experimental settings, there are few clinical trials of HBO therapy for acute spinal cord injury (SCI). We investigated the effect of HBO in acute SCI by measuring plasma high mobility group box 1 (HMGB1) and nuclear factor kappa-B (NF-κB) levels, and by monitoring changes in electromyogram F-persistence (the percentage of discernible F-waves) and F-chronodispersion (the difference between minimal and maximal latency).

A case report of a 4-year-old boy with intradural spinal cord abscess successfully treated with adjuvant hyperbaric oxygen therapy.

Intradural spinal cord abscesses are rare infections in early childhood and usually result from pre-existing congenital anomalies of the spinal column. The formation of abscess may be the result of hematogenous spread. It is treated by surgical and parenteral antibiotic treatment, but some special cases may require additional treatments. This article presents a 4-year-old male patient who was operated because of spina bifida (meningocele and tethered cord) at the external center, and upon complains of not being able to walk after one month, he was operated with the diagnosis of spinal intradural abscess and referred to us to continue his treatment. The patient was taken into an emergency operation when the spinal magnetic resonance imaging (MRI) taken in our hospital showed a progression of intradural abscess. Due to no regression of neurological deficits in the follow-up and with the risk of a second operation, application of antimicrobial therapy as well as hyperbaric oxygen therapy (HBOT) was planned. At the end of 20 HBOT treatment sessions, the patient started to walk with support and the antibiotic treatment was completed in six weeks.

Hyperbaric oxygen therapy for spinal cord ischaemia after complex aortic repair – a retrospective review.

Complex aortic repair (CAR) carries high rates of debilitating postoperative complications, including spinal cord injury. The rate of spinal cord deficits post-CAR is approximately 10%, with permanent paraplegia in 2.9% and paraparesis in 2.4% of patients. Treatment options are limited. Rescue therapies include optimization of spinal cord perfusion and oxygen delivery by mean arterial pressure augmentation (> 90 mm Hg), cerebrospinal fluid drainage, and preservation of adequate haemoglobin concentration (> 100 g L?). Hyperbaric oxygen therapy (HBOT) has been described in several case reports as part of the multimodal treatment for spinal cord ischemia. HBOT has been used in our centre as adjunct rescue treatment for patients with spinal cord injury post-CAR that were refractory to traditional medical management, and we aimed to retrospectively review these cases. After Research Ethics Board approval, we performed a retrospective review of all post-CAR patients who developed spinal cord injury with severe motor deficit and were treated with HBOT at our institution since 2013. Seven patients with spinal cord injury after CAR were treated with HBOT in addition to traditional rescue therapies. Five patients showed varying degrees of recovery, with two displaying full recovery. One developed oxygen-induced seizure, medically treated. No other HBOT-related complications were noted. Our retrospective study shows a potential benefit of hyperbaric oxygen therapy on neurological outcome in patients who developed spinal cord injury after CAR.

Perfluorocarbon in Delayed Recompression with a Mixed Gender Swine Model of Decompression Sickness.

Perfluorocarbons (PFC) are fluorinated hydrocarbons that dissolve gases to a much greater degree than plasma and hold promise in treating decompression sickness (DCS). The efficacy of PFC in a mixed gender model of DCS and safety in recompression therapy has not been previously explored. Swine (25 kg; N = 104; 51 male and 53 female) were randomized into normal saline solution (NSS) or PFC emulsion treatment groups and subjected to compression on air in a hyperbaric chamber at 200 fsw for 31 min. Then the animals were decompressed and observed for signs of DCS. Afterwards, they were treated with oxygen and either PFC (4 cc · kg-1) or NSS (4 cc · kg-1). Surviving animals were observed for 4 h, at which time they underwent recompression therapy using a standard Navy Treatment Table 6. After 24 h the animals were assessed and then euthanized. Survival rates were not significantly different between NSS (74.04%) and PFC (66.67%) treatment groups.